中生网|生物技术|生物网址|生物软件|实用工具|本站导航

生物新闻

-

实验技术

-

软件教程

-

论文考试

-

肿瘤癌症

-

检验知识

-

仪器使用

-

健康知识

中生网 > 实验技术 > 技术文章 > 引物设计总结

引物设计总结

更新:2007年05月04日 阅读次数: 【字体:
寡核苷酸的优化设计
郑仲承
( 中国科学院上海生命科学院生物化学和细胞生物学研究所,上海 200031 )
在核酸分子杂交、DNA序列测定和通过PCR放大DNA片段等实验中,都需要使用寡核苷酸作为探针或引物,而对这些反应的质量起最重要影响作用的,就是这些寡核苷酸探针或引物。用优化的寡核苷酸进行实验能够很快得到好的结果,而用不够合适的寡核苷酸时,常常得出似是而非的结果,不仅大大增加了后续实验的工作量,还可能一无所获。怎样优化设计寡核苷酸呢?至少有下列几个方面的问题需要考虑。
1. 估测可能形成的DNA或RNA双链的稳定性
寡核苷酸,无论是DNA的或者RNA的,都有形成双链结构的潜在可能性,正如下面反复提到的,这种结构对寡核苷酸的作用有很大影响。所以,预测这种结构的稳定性对设计和优化寡核苷酸就很重要。在一个双链结构中,碱基对的相对稳定性是由其邻近碱基决定的。在热动力学中,这样的性质以双链形成时的自由能(ΔG)来表示。现在,大多采用 Breslauer等人提出的,以最接近的相邻核苷酸的动力学数值(自由能)来预测双链稳定性的方法。为简化起见,所有的计算都在25 ℃条件下进行。此时,最接近的相邻核苷酸的自由能是:
此主题相关图片如下:
ΔG(kcal/mol)
例如,双链d(ACGG/CCGT)的ΔG是:
ΔG(ACGG)=ΔG(AC)+ΔG(CG)+ΔG(GG)=-(1.3+3.6+3.1)=-8.0 kcal/mol
此计算方法特别适用于测定其3′末端会形成双链的引物的相容性。也可以用来计算发夹环结构的ΔG。不过,这时需要根据环区内核苷酸的数量添加一定的数值。如3个核苷酸时为5.2 kcal/mol;4个时为4.5;5个为4.4;6个是4.3;7和8个为4.1 kcal/mo1。
2. 选择引物的一般规则
设计和选择引物时有5个要素必需注意。
2.1 引物的3′末端不互补 引物的3′末端一定不能有很大的互补性,因为它们的互补会形成引物二聚体,这就会带来很大的问题,例如合成出非专一的产物,极大地减少所期望产物的得量。有实验表明,3′末端双链的ΔG是0~-2 kcal/mol时,PCR产量几乎达到百分之百,随着其绝对值的增加产量逐渐下降,在-6时只有40%,到-8时少于20%,而-10时,接近于0。虽然产量还取决于其他参数,如退火温度、引物的专一性等等,但是用Taq聚合酶操作时,由于它的工作能力很强,能够在很短的时间内就识别3′末端互补的双链区并发动聚合反应,即使3′末端双链的稳定性很差也不能阻碍它的作用,所以这时产量对二聚体的形成就有很大的依赖性。
2.2 引物分子内不互补 应当尽量不用会通过释放能量而形成分子内双链结构的寡核苷酸。虽然有些带有发夹环,其ΔG为-3 kcal/mol的自身互补引物也可以得到不错的结果,但是如果它的3′末端被发夹环占据时就很麻烦,即会引发引物内部的延伸反应,减少了参与正式反应引物的数量。当然,如果发夹环在5′末端对反应就没有多大的影响了。
2.3 引物的组分、解链温度和长度 普遍认为PCR引物应当有50%的GC/AT比率。其实,这是不对的。以人基因组DNA为模板,用81% AT的引物可以产生单一的,专一的,长250 bp,含有70% AT的产物。完全没有必要复杂地去计算产物和引物的解链温度,PCR引物的GC/AT比率应当等于或高于所要放大的模板的GC/AT比。要知道,更重要的因素是模板与稳定性较小的引物之间解链温度的差异。差异越小,PCR的效率越高。因为DNA的解链温度也取决于它的长度,所以有的研究者喜欢设计很长,而不求它很稳定的引物。可是,引物太长就难以避免形成二聚体和自身互补,因此,一般还是不用为好。如果期待的产物长度等于或小于500 bp,选用短的(16~18 mer)的引物:若产物长5 kb,则用24 mer的引物。有人用20~23 mer引物得到40 kb的产物。但是,引物较长时,如果不借助引物选择的计算机软件帮助,就很难确定一对引物是否会形成二聚体,是否有自身互补性以及专一性如何。于是,用眼睛选出来的寡核苷酸放大长片段DNA时就会使引物彼此引发而不是延伸模板,得出非专一产物。通过下述的观察内部稳定性原理可以极大地减少这种问题。
2.4 引物的内部稳定性 在DNA测序和PCR中最好用5′末端稳定(如GC含量较多),而3′末端不太稳定(如AT含量较多)的引物,这种引物的结构可以有效地消除假引发反应。这就是基于引物内部稳定性的经验之谈。其3′末端稳定性低的引物在这些反应中能起好作用的原因在于,接近或在3′末端上的碱基与非靶位点碱基所形成的配对的稳定程度还不足以引发DNA合成,所以不会产生假产物。因此,为了有效地引发反应,引物的5′末端和中央部分必须与靶DNA也形成双链。与此相反,带有稳定的、GC丰富的3′末端的寡核苷酸不需要其所有的核苷酸序列都与靶序列配对,只凭借其3′末端与靶序列任何位点的牢固配合就可以引发反应,产生非专一产物。如果用3′末端低稳定性的引物,反应的最适退火温度范围会不寻常的宽。这就可以不经过事先的最佳化实验就能在最佳条件下进行反应。还要注意的是PCR反应产物的质量还取决于模板(底物的复杂性、Tm、产物长度)和退火的温度与时间。所以,有时3′末端稳定的引物也可以满意地进行反应。但是,无论如何,寡核苷酸3′末端最后5个核苷酸的稳定性小于-9 kcal/mol的,通常就是专一性的探针或引物。寡核苷酸3′末端越不稳定,假引发的可能性越低。
2.5 引物的唯一性 为了放大单个的、专一性DNA片段,选用的引物序列就应当是唯一的,即在模板中没有重复序列。虽然不会整个引物序列都偏好于和模板中的一个以上位点匹配,但是,通常见到的引物的3′末端往往都有6~7个没有什么个性的核苷酸。如果假引发的位点正好在放大区的内部,那麻烦就大了。由于短的DNA片段有更高的PCR或杂交效率,就容易产生非专一产物。如果用哺乳动物基因组序列作为模板,可以用Alu序列或其他短重复元件来核对想用的引物的互补性。由此也可知,应当避免使用同寡聚物(如—AAAAAA—)和二核苷酸重复(如—ATATAT—)。
3. 按照氨基酸序列设计寡核苷酸
按照多肽的氨基酸序列来设计 PCR引物或杂交探针是最常用的实验手段,尤其是在试图“钓取”一个蛋白质的基因时。此时要注意的问题有:
(1)宁可用简并引物,也不用猜测的引物。氨基酸密码子的简并性给予引物设计以可塑性,这比用猜测的密码子要好得多。有人用1 024个简并引物得到很好的结果。
但是,应当避免在一个区域内有很高的简并性。但也有简并性低使引物不工作的报道。
(2)引物与模板的错配。一般认为,所用引物与模板有15%~20%的错配,PCR的效果还能接受。但是,引物3′末端的错配比同样错配率的5′末端错配会引起更严重的问题。
在最后4个碱基中有2个错配的引物,其 PCR产量急剧下降。但是,当核苷酸浓度高时,3′末端有错配的引物还能被Tag聚合酶很好地利用。在0.8 mmol/L时,大多数3′末端错配引物可以接受,虽然非专一产物比较多,DNA合成的忠实性也下降。即使在低核苷浓度下,还会有少量从错配碱基出发的合成,因此,在开始的PCR循环中把退火时间增加到3~5分钟,比之于用标准退火时间和高浓度核苷酸能够产生质量更好的所求产物。
(3)在用唯一性引物时,建议用0.2 mmol/L或更低的总核苷酸浓度,因为高浓度会增加错误参入的比率。
(4)简并寡核苷酸时,PCR应当在比较高的引物浓度下进行,即1~3 μmol/L而不是0.2 μmol/L,因为在反应混合物中的大多数寡聚物并不是被用来引发专一的反应,而只是产生高的背景而已。
***************************************************************************
推荐使用Primer Premier 5.0
作者:LiFeng
下载的安装文件有4M, 安装后运行该软件, 屏幕上方是最基础的工具条,如 File, Edit, View, Search 等等, FILE下拉菜单中包括New Sequence(Protein or DNA), Open Sequence( Protein or DNA), save, save as, Degenerate Bases, Print, Exit。EDIT下拉菜单中除包括常用的Copy, Cut, Paste 之外,还有一项Preference可以设定默认引物长度等参数。其余View, Search, Function, Translate 等其他的功能,基本上可以在中央的操作框中实现。
下面简要介绍一下操作框。 下半部分显示的是一段DNA序列, 可以改变其中的碱基,但DEMO版中不可以,序列上方有一排工具钮, 如下
5' Sequence No: 5' 到 3' 显示DNA序列。 实际上该功能确定序列中第一个碱基的号码,可将所处理的碱基在整体中的位置加以确定。
Header: 好像是表示这段基因的来源说明。 当基因序列来自于各大数据库格式的文件时,显示序列前的其他说明文字。
3, 10; 碱基对以 3 或 10 为一单元显示序列。
Find, Find next: 寻找一段特定碱基序列.(Search 下拉菜单中还有一项Go to position 可查找指定位置。)
S, A, ds DNA: 显示源序列互补序列或双链DNA序列。
还有两个与声音有关按钮, 无太大用。 在刚输入序列、测序后等对比文件序列与文字序列是否一致时非常重要,可以让一个人轻松对序列。
在操作框上方正中有两个按钮; DNA, PROTEIN, 由于我用的是试用版这项功能不能使用, 但很明显这项功能可将已知DNA序列翻译为蛋白质氨基酸序列,或者是反过来。当序列是核酸时,PROTEIN可以操作,将序列翻译成蛋白;而序列是蛋白时,可以进行DNA操作,将蛋白生成对应的DNA序列。这两个键在将表达系统从一种转移到另一种的设计时很有用。在上方的Translate下拉菜单中可以对读码框和密码子进行设定和编辑, 可以设定标准密码子, 也可以设定酵母,植物,脊椎,无脊椎密码子, 还可以添加新的密码表。
左上角纵向排列有三个Function按钮: Ⅰ, Primer; Ⅱ, Enzyme; Ⅲ, Motif 。
Ⅰ,Primer; 在PCR和核酸杂交中设计引物。点击后出现一新框。中间偏上是DNA序列与引物, 可以用鼠标直接选择引物的位置。 序列下方显示了各项参数,还包括发夹结构,二聚体异二聚体在链中出现次数,如没有的话出现NONE钮, 如果存在该结构则为FOUND钮, 点击该钮可以察看该结构出现的具体位置, 包括这样引物的特性一目了然。
最上方是三个功能按钮① Search ② results ③ Edit primers
① Search: 搜寻引物,可选择PCR引物,序列引物,杂交探针,可以自己定义在正负链中搜索,搜寻范围,引物长度,PCR产物长度,可选择自动搜索手动搜索,还可设定搜索参数,如Tm, GC, Degeneracy,3' 端稳定性, Dimer, Hairpin, 等引物参数。设定完毕点击OK即可得到结果列表,包括所有可能的引物数目,以及各项参数达不到要求筛去的引物,最下方显示的是最佳方案的个数,可以在Result项中详细察看搜索得到的结果。
② Result: 显示引物搜寻结果列表,可以选定正负链或PAIRS,表中显示了每个引物的位置长度,还可以点击每个引物方案察看其在链中位置及其各项参数,你还可以选择所需要的并标记。
③Edit primers: 可以点击链两侧的左右箭头来选定引物位置,可以任意编辑引物,添加或删除任一个碱基,修改任一个碱基,当你编辑完毕,点Analyze钮就可以察看你编辑的引物的各项参数。
Ⅱ,Enzyme: 做序列的酶切位点, 可以应用于基因操作中酶切部位和所用酶 的选择。 最上方有两个选择:序列分析的范围;酶切位点个数选择(可低于1-6个)。点击后左右两边有一栏酶,左边为所有酶, 右边为选定的酶。
中间四个钮分别为:
ADD: 从所有酶列表中选定所用酶加入右侧列表,
DELETE:从选中酶列表中删除某个酶,
EDIT: 编辑酶列表,可以加入新的酶或删除已有酶,
FILTER: 如果你不知道该选用那几种酶,可用此功能筛选所需酶, 可用酶切位点BP数(4BP-13BP)和 切割后的接头Overhang ( 3', 5', BLUNT, 还可以具体规定切出的接头为那几个碱基)来筛选。 所用酶选好后点OK即可得到酶切结果, 有四种格式:
Table: 酶切位点,位置。
SEQ; 整段序列及酶切位置。
MAP: 与上一项近似。用示意图的方式显示结果。
NON Cutter: 切不动的酶
Ⅲ,Motif: 查找特定序列, 如 -10区,-35区,AGGA BOX, CAAT BOX, 与基因表达调控有关。 最上方有两个选择:序列分析的范围;Motif位点个数选择(可低于1-6个)。 左边一栏是所有特定序列,右边是选定的,中间按钮与Ⅱ近似,只是没有FILTER功能。选定你要查找的东西,点一下OK就可以看结果了,与Ⅱ的结果输出一样有四种格式:
Table: Motif的位置,数量。
SEQ: 整段序列及Motif的位置。
MAP: 与上一项近似。 用示意图的方式显示结果。
Motif absent: 序列中不存在的Motif。
*******************************************************************************
我个人感觉,先用RNA structure模拟一下mRNA结构,选择非发夹结构区,再用Primer Premier 5.0设计引物,设计出来后再用oligo验证一下,这样最保险!不过万一不行的,RNA structure只能是个参考,不要全信,否则很难设计引物而且Primer Premier 5.0有时对antisense的能否有配对等识别不清,oligo可靠!
引物由DNA合成仪合成,其长度通常为15-26 个碱基,其使用浓度一般为1umol/L。这一浓度足以完成30个循环反应。引物浓度太高会出现非特异扩增现象,反之,若引物浓度太低,则PCR效率极低。PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。因此,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但首先应从DNA找出需要的基因序列,确定保守区;然后遵循某些原则进行引物设计,能最大限度地保证PCR的成功。
1.引物的特异性
引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。
2.避开产物的二级结构区
某些引物无效的主要原因是引物重复区DNA二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关计算机软件可以预测估计mRNA的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。
3.长度
寡核苷酸引物长度为15~30bp,一般为20~27mer。引物的有效长度:Ln=2(G+C)+(A+T),Ln值不能大于38,因为>38时,最适延伸温度会超过Taq DNA聚合酶的最适温度(74℃),不能保证产物的特异性。如果退火温度设置在近于引物的Tm值几度的范围内,18~24个寡核苷酸在标准PCR中能较好的保证特异性。在退火温度54℃或稍高能保证特异性和有效性的情况下,尽量使引物短;扩增片段异源性较强,如有同工型(ioform)或利用某物种已知基因序列扩增另一物种中基因时,引物可用28~35个碱基(至少25个,Tm值大于70℃)。
4.G+C含量G+C含量一般为40%~60%。其Tm值是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度一般高于Tm值5~10℃。若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳,在标准PCR中Tm值不能低于54℃。实际Tm值受各缓冲液成分,甚至引物和模板的浓度的影响,所以只能作为一近似值。Rychlik提供的基于最近邻的热力学参数,预测Tm值更准确些。最重要的是一对引物的Tm值(受长度和GC含量影响)应该协调一致。
5.碱基随机分布
引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在G+C富集序列区错误引发。
6.引物自身
引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构牙引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。若用人工判断,引物自身连续互补碱基不能大于3bp。
7.引物之间
两引物之间不应有互补性,尤应避免3′端的互补重叠以防引物二聚体的形成。一对引物间不应多于4个连续碱基的同源性或互补性。
8.引物的3′端
引物的延伸是从3′端开始的,不能进行任何修饰。3′端也不能有形成任何二级结构可能,除在特殊的PCR(AS-PCR)反应中,引物3′端不能发生错配。即使在未知序列的PCR中,引物3'末端最后5-6个核苷酸的错配也应尽可能的少。如扩增编码区域(根据蛋白序列设计的引物),引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增特异性与效率。因此,如果能确定一个保守氨基酸,或将其密码子的前2个碱基作为3'末端,若是M和W,则为3个碱基。(还要考虑密码子在该类生物中的保守性)
在标准PCR反应体系中,用2U Taq DNA聚合酶和800μmol/L dNTP(四种dNTP各200μmol/L)以质粒(103拷贝)为模板,按95℃,25s;55℃,25s;72℃,1min的循环参数扩增HIV-1 gag基因区的条件下,引物3′端错配对扩增产物的影响是有一定规律的。A∶A错配使产量下降至1/20,A∶G和C∶C错七下降至1/100。引物A:模板G与引物G:模板A错配对PCR影响是等同的。在不得已的情况下,以T结尾的引物即使与T、G或C错配仍可有效延伸。如果3'末端为CC、GG、CG、GC,能提高引发效率。
9.引物的5′端
引物的5′端限定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入突变位点、插入与缺失突变序列和引入一启动子序列等。
10.在靶序列中的位置
若在cDNA序列内找寻PCR引物,需特别注意两点:⑴尽力将引物和产物保持在mRNA的编码区域内,因为这是生成蛋白质的独特序列,不像3'末端非编码区域与许多其它mRNA有同源性;⑵尽力把引物放到不同的外显子上,以便使RNA特异的PCR产物与从污染DNA中产生的产物在大小上相区别。如果PCR引物必须在特异序列的限定区域内选择,应挑选缺乏单一核苷酸的区域,这样可以减少广范围引物-引物同源的机会。同样也要注意引物对在长度和GC含量上取得平衡以便使两个引物的Tm值相差在2-3℃范围内。
12.待扩增片段序列未知时,其序列内可能包含有引物内所设计利用的酶切位点,可采用识别8个碱基序列的内切酶(Asc I, Not I, Pac I, Pme I, Sfi I, SgrA I,Srf I,Sse8387 I, Swa I)予以解决。
13.设计引物内的酶切位点靠近DNA末端时,要在引物的5'端额外加入几个碱基,便如 HpaII 和 MboI,要求在限制性序列位于5'末端前至少有一个碱基(可参考1998/99New Engeand Biolabs Catalog 第258页所附的 Cleavage close to the end of DNA fragments(oligonucleotides)增加额外的碱基),否则将影响酶切效率。当然,还有许多特殊目的的引物设计就需要按照所要达到的目的进行不同的设计。总之,要掌握两个目的的平衡:扩增的特异性和扩增的有效性。
实际扩增时,引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。
*****************************************************************************
1 如何测定引物的OD值?
用紫外分光光度计在260nm波长测定溶液的光密度来定量。请注意紫外分光光度计的使用,测定时溶液的光密度最好稀释到0.2-0.8之间。DNA干粉用一定体积的水充分振荡溶解以后,取部分溶液稀释到1ml并在1ml标准比色杯中测定其光密度,即为所测体积的OD值,进而可以计算出母液的OD值。
2. 如何检测引物的纯度?
实验室方便的作法是用PAGE方法。使用加有7M尿素的16%的聚丙烯酰胺凝胶进行电泳。取0.2-0.5OD的引物,用尿素饱和液溶解或引物溶液中加入尿素干粉直到饱和,上样前加热变性(95℃,2mins)。加入尿素的目的一是变性,二是增加样品比重,容易加样。600V电压进行电泳,一定时间后(约2-3小时),剥胶,用荧光TLC板在紫外灯下检测带型,在主带之下没有杂带,说明纯度是好的。
3. 怎样按照使用浓度溶解引物?
记住几个参数:
在1ml体积1cm光程标准比色皿中,260nm波长下吸光度为1A260的溶液定义为1 OD260单位,据此定义,1 OD260引物干粉约为33微克;
碱基的平均分子量为324.5;
引物的分子量=碱基数 x 碱基的平均分子量;
引物的摩尔数=质量数 / 引物分子量
举例:如果您拿到一管标明为2 OD的20碱基的引物,
分子量=20 x 324.5=6490 质量数=2 x 33 =66μg
摩尔数=66 / 6490 =0.010 μmol= 10 nmol
若您需要溶解为10μM(=10pmol/μl)的溶液,只需加1mlddH2O充分溶解即可。
同时请您注意:真空干燥的DNA呈干膜状或粉末状在离心管底部,开启瓶盖时小心不要丢失;请加入足量的水充分振荡溶解。
4. 如何保存引物?
可以室温或-20℃密闭长期保存;溶解以后的DNA最好保存在-20℃,溶解引物的水的PH值要求大于7,并且无菌。带有荧光标记的引物请注意避光保存。
5. 已经溶解的引物,为什么原先使用正常,而过一段时间再使用就不好了?
如果您溶解引物的水PH过低或污染了菌或核酸酶,会使引物降解。使用时没有充分解冻振荡混合,液体不均匀也可能会造成引物加入量不准确。
6. 为什么说用EB染色合成DNA片段来定量是不正确的?
通常可以用EB染色的方法来判断双链DNA的量(如质粒DNA),是因为EB可以嵌合到双链DNA中。而合成的单链DNA,由于碱基组成不同,形成二级结构的可能性不同,EB的染色程度也会不同,比如Oligo(dT)等不形成二级结构,EB根本无法染色。所以不要用EB染色的方法来定量,而用紫外分光光度计检测。同样道理,用EB染色来照片不适合所有引物。
7.引物不纯会造成什么后果?
引物不纯可能会导致:1)非特异性扩增;2)无法用预先设计在引物5'端酶切位点的酶切开,特别是没有保护碱基的引物;3)用于测序出现双峰或乱峰。
8. 普通合成的DNA片段5'末端是磷酸基团吗?
普通合成的DNA片段5'末端与3'末端都是羟基,可直接用于PCR。如果需要您可以用多核苷酸激酶进行5'端磷酸化,或者要求我们合成时直接在5'或3'端进行磷酸化,需要另外收费(参见价目表)。
9. 常用标记的荧光染料的波长、可见光中的颜色
简称 全称 吸收波长 发射波长 颜色
6-FAM 6-carboxy-fluorescein 494nm 518nm Green
TET 5-tetrachloro-fluorescein 521nm 538nm Orange
HEX 5-hexachloro-fluorescein 535nm 553nm Pink
TAMRA tetramethyl-6-carboxyrhodamine 560nm 582nm Rose
ROX 6-carboxy-x-rhodamine 587nm 607nm Red
Cy3 Indodicarbocyanine 552nm 570nm Red
Cy5 Indodicarbocyanine 643nm 667nm Violet
from:http://www.lookgene.cc/useful.htm
**********************************************************************
计算机辅助引物设计 from:http://www.augct.com/Chinese/technic/primerds.htm
引物在PCR反应中处于关键作用,引物决定着扩增的特异性和扩增的效率。而在目前DNA的化学合成技术非常成熟的情形下,引物设计是否合适是我们应更为关注的层面。现在有很多的免费的软件或网络资源(http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi)能辅助我们进行引物设计,这使我们总能找到适合我们自己应用的引物设计工具。笔者用得较多的引物设计软件有oligo 6.0 (http://bioinfor.cicams.ac.cn/softintro.htm),Primer premier 5 ([urlwww.premierbiosoft.com[/url] demo version)。需要说明的是经过细致推敲和计算的引物并不能保证扩增一定能够成功或高效,但严密的设计并系统地考虑一些应该避免的问题,能使我们在大多数情形下找到我们所需要的引物。 笔者接触PCR较早,较多地从事引物设计也有一年多的时间,其间也得到过许多老师的帮助指教,现将一些体会整理出来,希望能对大家有一些帮助,同时也盼望能得到更多的指点。
一,简单扩增体系中引物设计原则。
简单体系,是指扩增体系中模板较为单一且大部或全部模板序列已知,如经过纯化的短片段或纯化后的重组质粒等,是相对后面所提的复杂体系而言的一个粗略的分类。以下是一个大致的流程:
1, 考虑实验本身对这对引物的要求。如:待扩增区域和扩增产物长度,扩增产物是否需要考虑移码突变,是否需要在引物5’端引入酶切位点和引入哪些酶切位点,是否需要引入点突变,…… 依据具体的实验而定。实际上,此步应该是最费时间和精力的一步。
2, 引物的Tm值。主要需要考虑的因素有:I, 反应体系对引物退火温度的影响;如酶的最适工作温度对引物退火温度的限制等。II,扩增产物的Tm值。引物和产物的Tm值不要相差太大,20摄氏度范围内较好。定下引物的Tm值范围之后即可定下引物的长度范围。
3, 引物的二级结构。包括引物自身二聚体、发卡结构、引物间二聚体等。这些因素会影响引物和模板的结合从而影响引物效率。对于3’末端且5’端突出的引物二聚体,应控制其ΔG大于-5.0kcal/mol或少于三个连续的碱基互补,因为此种情形的引物二聚体有进一步形成更稳定结构的可能性,引物中间或5’端可适当放宽。发卡结构也以3’端或近3’端对引物-模板结合影响更大,影响发卡结构的稳定性的因素除了碱基互补配对的键能之外,与茎环结构亦有很大的关系。应尽量避免3’末端有发卡结构的引物。
4, 扩增的特异性。好的设计工具会提供一个引物异位引发的评价指标,如Oligo 6.0 的false priming efficiency,即异位引发效率,这个值是由程序根据引物自身二级结构的能量、错配的类型、错配离3'末端的距离等因素综合计算而得出,当此值大于200时便很有可能引发扩增。如所用工具无量化指标,则可依据经验,当引物与模板在非预期位置退火,超过70%的碱基能互补配对,或引物3’末端连续8个或以上碱基配对,则认为有引发的可能。
在简单扩增体系中,当我们定好上述限制条件,如能找到适合这些条件的引物,便最大可能地找到适合我们实验的引物。如不能满足上述所有条件,则按所列顺序依次满足,总的来说遵循这样一个秩序:扩增出符合实验需要的产物→扩增出能够分辨分离的符合实验需要的产物→特异地扩增出符合实验需要的产物。同样,这一先后秩序也适用于复杂的扩增体系。
二,复杂模板的扩增体系。
所谓复杂模板,是指体系中的DNA种类和数量较多,不能以此引物对所有的模板一一比较来计算其异位引发的可能性的情形。此情形下与简单模板扩增相比较,除了需要考虑(一)中所列的4点以外,还需要遵循下面一些原则以尽可能的避免异位扩增。
1, 引物3’末端的稳定性。引物3’末端的稳定性由引物3’末端的碱基组成决定,一般考虑末端5个碱基的ΔG。此值的大小对扩增有较大的影响,负值大,则3’末端稳定性高,扩增效率更高,同时也更易于异位引发。因此在复杂模板的扩增体系中,3’末端5聚体的ΔG应大于-9.0kcal/mol。
2, 碱基组成应尽量随机分布,避免单一碱基的聚集。这样可避免引物在模板的单一碱基富集区引发扩增反应。
3, 引物3’末端应尽量避免T,相较而言,3’末端的T对于此处的错配更为宽容。
三,测序引物设计时的注意点。
1, 对特异性的标准掌握更严格一些,也比普通PCR引物设计时更优先考虑特异性。因为如果在测序反应中,如果引物与模板在非预期位置退火并引发链延伸,会对结果对来很大的干扰甚至造成结果无法识读。
2, Tm值适当高一些。现在大部分测序反应均选用耐热的测序级DNA聚合酶来催化,并采用PCR的热循环程序。选用Tm值稍高一些,甚至退火温度接近酶的最佳延伸温度的引物,有助于使反应顺利跨过待测模板的二级结构区,也有助于降低非特异反应。
四,关于引物5’端引入限制性内切酶位点。
自从发现 Taq 酶具有非模板依赖的在新生成DNA链的3’末端加上一个A的特性以来,在引物5’端引入酶切位点从而方便后续克隆步骤的方法的应用大大减少,取而代之的是利用带T载体的粘端连接来包装PCR产物。若实验需要在引物5’端引入相关酶切位点时,除了需要清楚所选用的酶的识别序列之外,还需要了解此酶是否有位点优势效应,即酶的活性是否因为识别位点在序列的不同位置而不同,并根据此点来选择5’末端的保护碱基。此外保护碱基的另外一个作用就是保护酶切位点不被Taq 酶具有的微弱的5’→3’外切酶活性破坏。
五,简并引物的设计。
简并引物是根据某些特定的目的而选用的一组混合物,指在寡核甘酸的某一位置(一个简并位)上有多个碱基存在于不同的寡核甘酸分子中,如一组简并引物中有N1,N2,N3三个简并位,在N1上有三个碱基简并,N2二个,N3 四个,则此简并引物中共有3*2*4=24种寡核甘酸分子。简并引物常用的几个方面:
1.从已知蛋白到相关核酸分子的研究。
2.用一组引物扩增一类分子。
在上述两个主要应用中,需要注意的几个主要问题:
1. 从蛋白到核酸,应注意:
① ,尽量选择简并度低的氨基酸区域为引物设计区。如蛋氨酸和色氨酸均只有一个密码子。
② ,充分注意物种对于密码子的偏好性,选择该物种使用频率高的密码子,以降低引物的简并性。
③ ,引物不要终止于简并碱基,对于大多数氨基酸残基来说,意味着引物3’末端不要位于密码子的第三位。
④ ,在简并度高的位置,可用次黄嘌呤(dI)代替简并碱基。
以上几点,遵循的总的原则为:尽量降低引物的简并度,尤其在3’末端或近3’末端。
2.用一对简并引物扩增一类DNA分子时,同样遵循上述总的原则,即尽量降低引物的简并度,尤其在3’末端或近3’末端。
在此种应用中,应先利用工具软件(多序列对准比较软件)或其它工具找到这些分子的保守区,然后根据共有序列,应用上面所述的一些原则来设计所需要的引物。
PCR 引物设计及软件使用技巧
摘要:本文旨在介绍使用软件设计PCR 引物的技巧。在PCR 引物设计原则的基础上,详
细介绍了两种常用引物设计软件的基本使用方法,并对其各自的优缺点进行了比较。一般性
引物自动搜索可采用“Premier Primer 5”软件,而引物的评价分析则可采用“Oligo 6”软件。
自从1985 年Karny Mullis 发明了聚合酶链式反应以来,PCR 技术已成为分子生物学研究中使用最多、最广泛的手段之一[1],而引物设计是PCR 技术中至关重要的一环。使用不合适的PCR 引物容易导致实验失败:表现为扩增出目的带之外的多条带(如形成引物二聚体带),不出带或出带很弱,等等。
现在PCR 引物设计大都通过计算机软件进行。可以直接提交模板序列到特定网页,得到设计好的引物,也可以在本地计算机上运行引物设计专业软件。一般来说,专门进行PCR引物设计的专业软件功能更为强大,但使用起来却不太容易。本文将就引物设计原则及软件
使用问题进行探讨。
引物设计的原则
引物设计有3 条基本原则:首先引物与模板的序列要紧密互补,其次引物与引物之间避
免形成稳定的二聚体或发夹结构,再次引物不能在模板的非目的位点引发DNA 聚合反应(即错配)。具体实现这3 条基本原则需要考虑到诸多因素,如引物长度(primer length),产物长度(product length),序列Tm 值(melting temperature),引物与模板形成双链的内部稳定性(internal stability, 用&   #8710   G 值反映),形成引物二聚体(primer dimer)及发夹结构(duplex formation and hairpin)的能值,在错配位点(false priming site)的引发效率,引物及产物的GC 含量(composition),等等。必要时还需对引物进行修饰,如增加限制性内切酶位点,引进突变等。根据有关参考资料和笔者在实践中的总结,引物设计应注意如下要点:
1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延
伸温度大于74℃,不适于Taq DNA 聚合酶进行反应[2]。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导
致错配。引物3’端出现3 个以上的连续碱基,如GGG 或CCC,也会使错误引发机率增
加[2]。
3. 引物3’端的末位碱基对Taq 酶的DNA 合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A 的错配效率明显高于其他3 个碱基,因此应 当避免在引物的3’端使用碱基A[3][4]。另外,引物二聚体或发夹结构也可能导致PCR 反
应失败。5’端序列对PCR 影响不太大,因此常用来引进修饰位点或标记物[2]。
4. 引物序列的GC 含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC
含量不能相差太大[2][5]。
5. 引物所对应模板位置序列的Tm 值在72℃左右可使复性条件最佳。Tm 值的计算有多种
方法,如按公式Tm=4(G+C)+2(A+T),在Oligo 软件中使用的是最邻近法(the nearest
neighbor method) [6][7]。
6. &   #8710   G 值是指DNA 双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3’端&   #8710   G 值较低(绝对值不超过9),而5’端和中间&   #8710   G 值相对较高的引物。引物的3’端的&   #8710   G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反应[6]。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且
降低引物有效浓度而使PCR 反应不能正常进行[8]。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载
体的相应序列而确定。
值得一提的是,各种模板的引物设计难度不一。有的模板本身条件比较困难,例如GC含量偏高或偏低,导致找不到各种指标都十分合适的引物;在用作克隆目的的PCR 因为产物序列相对固定,引物设计的选择自由度较低。在这种情况只能退而求其次,尽量去满足条件。
引物的自动搜索和评价分析
软件的引物设计功能主要体现在两个方面:首先是引物分析评价功能,该功能只有少数
商业版软件能够做到,其中以“Oligo 6”最优秀;其次是引物的自动搜索功能,各种软件在
这方面的侧重点不同,因此自动搜索的结果也不尽相同。据笔者的经验,自动搜索功能以
“Premier Primer”为最强且方便使用,“Oligo 6”其次,其他软件如“Vector NTI Suit”、
“Dnasis”、“Omiga”和“Dnastar”都带有引物自动搜索功能,但搜索结果不是十分理想。
要想得到效果很好的引物,在自动搜索的基础上还要辅以人工分析。笔者认为引物设计软件
的最佳搭配是“Oligo”和“Premier”软件合并使用,以“Premier”进行自动搜索,“Oligo”
进行分析评价,如此可快速设计出成功率很高的引物。
Primer Premier 5.0 的使用技巧简介
1. 功能
“Premier”的主要功能分四大块,其中有三种功能比较常用,即引物设计( )、
限制性内切酶位点分析( )和DNA 基元(motif)查找( )。“Premier”还具有同源
性分析功能( ),但并非其特长,在此略过。此外,该软件还有一些特殊功能,其中
最重要的是设计简并引物,另外还有序列“朗读”、DNA 与蛋白序列的互换( )、
语音提示键盘输入( )等等。
有时需要根据一段氨基酸序列反推到DNA 来设计引物,由于大多数氨基酸(20 种常见
结构氨基酸中的18 种)的遗传密码不只一种,因此,由氨基酸序列反推DNA 序列时,会
遇到部分碱基的不确定性。这样设计并合成的引物实际上是多个序列的混和物,它们的序列
组成大部分相同,但在某些位点有所变化,称之为简并引物。遗传密码规则因物种或细胞亚
结构的不同而异,比如在线粒体内的遗传密码与细胞核是不一样的。“Premier”可以针对模
板DNA 的来源以相应的遗传密码规则转换DNA 和氨基酸序列。软件共给出八种生物亚结
构的不同遗传密码规则供用户选择,有纤毛虫大核(Ciliate Macronuclear)、无脊椎动物线粒
体(Invertebrate Mitochondrion)、支原体(Mycoplasma)、植物线粒体(Plant Mitochondrion)、
原生动物线粒体(Protozoan Mitochondrion)、一般标准(Standard)、脊椎动物线粒体(Vertebrate
Mitochondrion)和酵母线粒体(Yeast Mitochondrion)。
2. 使用步骤及技巧
“Premier”软件启动界面如下:
其主要功能在主界面上一目了然(按钮功能如上述)。限制性酶切点分析及基元查找功
能比较简单,点击该功能按钮后,选择相应的限制性内切酶或基元(如-10 序列,-35 序列
等),按确定即可。常见的限制性内切酶和基元一般都可以找到。你还可以编辑或者添加新
限制性内切酶或基元。
进行引物设计时,点击按钮,界面如下:
进一步点击按钮,出现“search criteria”窗口,有多种参数可以调整。搜索目
的(Seach For)有三种选项,PCR 引物(PCR Primers),测序引物(Sequencing Primers),
杂交探针(Hybridization Probes)。搜索类型(Search Type)可选择分别或同时查找上、下游引
物(Sense/Anti-sense Primer,或Both),或者成对查找(Pairs),或者分别以适合上、下游
引物为主(Compatible with Sense/Anti-sense Primer)。另外还可改变选择区域(Search
Ranges),引物长度(Primer Length),选择方式(Search Mode),参数选择(Search Parameters) 等等。使用者可根据自己的需要设定各项参数。如果没有特殊要求,建议使用默认设置。然
后按,随之出现的Search Progress 窗口中显示Search Completed 时,再按,这时搜索结果以表格的形式出现,有三种显示方式,上游引物(Sense),下游引物 (Anti-sense),成对显示(Pairs)。默认显示为成对方式,并按优劣次序(Rating)排列,满分为100,即各指标基本都能达标(如下图)。点击其中一对引物,如第1#引物,并把上述窗口挪开或退出,显示“Peimer Premier”主窗口,如图所示:该图分三部分,最上面是图示PCR 模板及产物位置,中间是所选的上下游引物的一些性质,最下面是四种重要指标的分析,包括发夹结构(Hairpin),二聚体(Dimer),错误引发情况(False Priming),及上下游引物之间二聚体形成情况(Cross Dimer)。当所分析的引物有这四种结构的形成可能时,按钮由变成,点击该按钮,在左下角的窗口中就会出现该结构的形成情况。一对理想的引物应当不存在任何一种上述结构,因此最好的情况是最下面的分析栏没有,只有。值得注意的是中间一栏的末尾
给出该引物的最佳退火温度,可参考应用.在需要对引物进行修饰编辑时,如在5’端加入酶切位点,可点击,然后修改引物序列。若要回到搜索结果中,则点击按钮。如果要设计简并引物,只需根据源氨基酸序列的物种来源选择前述的八种遗传密码规则,反推至DNA 序列即可。对简并引物的分析不需像一般引物那样严格。总之,“Premier”有优秀的引物自动搜索功能,同时可进行部分指标的分析,而且容易使用,是一个相当不错的软件。
Oligo 6.22 使用技巧简介
1. 功能
在专门的引物设计软件中,“Oligo”是最著名的。它的使用并不十分复杂,但初学者容易被其复杂的图表吓倒。Oligo 5.0 的初始界面是两个图:Tm 图和ΔG 图;Oligo 6.22 的界面更复杂,出现三个图,加了个Frq 图。“Oligo”的功能比“Premier”还要单一,就是引物
设计。但它的引物分析功能如此强大以至于能风靡全世界。
2. 使用(以Oligo 6.22 为例)
Oligo 6.22 的启动界面如下:
图中显示的三个指标分别为Tm、ΔG 和Frq,其中Frq 是6.22 版本的新功能,为邻近6
至7 个碱基组成的亚单位在一个指定数据库文件中的出现频率。该频率高则可增加错误引发的可能性。因为分析要涉及多个指标,起动窗口的cascade 排列方式不太方便,可从windows 菜单改为tili 方式。如果觉得太拥挤,可去掉一个指标,如Frq,这样界面的结构同于Oligo 5.0,只是显示更清楚了。
经过Windows/Tili 项后的显示如图:
在设计时,可依据图上三种指标的信息选取序列,如果觉得合适,可点击Tm 图块上左
下角的Upper 按钮,选好上游引物,此时该按钮变成,表示上游引物已选取好。下游引物的选取步骤基本同上,只是按钮变成Lower。&   #8710   G 值反映了序列与模板的结合强度,最好引物的&   #8710   G 值在5’端和中间值比较高,而在3’端相对低(如图:)
Tm 值曲线以选取72℃附近为佳,5’到3’的下降形状也有利于引物引发聚合反应。Frq 曲线 为“Oligo 6”新引进的一个指标,揭示了序列片段存在的重复机率大小。选取引物时,宜选用3’端Frq 值相对较低的片段。当上下游引物全选好以后,需要对引物进行评价并根据评价对引物进行修改。首先检查引物二聚体尤其是3’端二聚体形成的可能性。需要注意的是,引物二聚体有可能是上游或下游引物自身形成,也有可能是在上下游引物之间形成(cross dimer)。二聚体形成的能值越高,越不符合要求。一般的检测(非克隆)性PCR,对引物位置、产物大小要求较低,因而应尽可能选取不形成二聚体或其能值较低的引物。第二项检查是发夹结构(hairpin);与二聚体相同,发夹结构的能值越低越好。一般来说,这两项结构的能值以不超过4.5 为好。当然,在设计克隆目的的PCR 引物时,引物两端一般都添加酶切位点,必然存在发夹结构,而且能值不会太低。这种PCR 需要通过灵活调控退火温度以达到最好效果,对引物的发夹结构的检测就不应要求太高。第三项检查为GC 含量,以45-55%为宜。有一些模板本身的 GC 含量偏低或偏高,导致引物的GC 含量不能被控制在上述范围内,这时应尽量使上下游引物的GC 含量以及Tm 值保持接近,以有利于退火温度的选择。如果PCR 的模板不是基因组DNA,而是一个特定模板序列,那么最好还进行False priming site 的检测。这项检查可以看出引物在非目的位点引发PCR 反应的可能性。如果引物在错配位点的引发效率比较高,就可能出假阳性的PCR 结果。一般在错配引发效率以不超过100 为好,但对于特定的 模板序列,还应结合比较其在正确位点的引发效率。如果两者相差很大,比如在正确位点的引发效率为450 以上,而在错误位点的引发效率为130,那么这对引物也是可以接受的。当我们结束以上四项检测,按Alt+P 键弹出PCR 窗口,其中总结性地显示该引物的位置、产物大小、Tm 值等参数,最有用的是还给出了推荐的最佳退火温度和简单的评价。由于“Oligo”软件的引物自动搜索功能与“Primer Premier 5”的相类似,并且似乎并不比后者更好用,在此不再赘述。其实,使用软件自动搜索引物就是让计算机按照人的要求去寻找最佳引物,如果参数设置得当将大大提高工作效率。除了本地引物设计软件之外,现在还有一些网上引物设计软件,如由Whitehead Institute
开发的“Primer 3”等(本网站http://210.72.11.60 已引进并调试好该软件,欢迎使用)。该
软件的独特之处在于,对全基因组PCR 的引物设计;可以将设计好的引物对后台核酸数据
库进行比对,发现并排除可引发错配的引物。因此建议经常做全基因组PCR 的用户试用

关键词:引物设计
相关栏目:实验技术 技术文章
中生网-生物软件-生物技术-生物网址-实验技术-本站导航-联系我们-收藏本站
©中生网-提供生物软件免费下载,生物实验Protocol,生物网址导航。
Copyright (C)2005-2014 www.seekbio.com All Rights Reserved.